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ABSTRACT

A numerical method for treating two-phase flow In pipes is presented
which incorporates the use of a partially implicit scheme in regions of
relatively low flow velocity and a fully implicit treatment in regions of
high velocity. This method takes advantage of the lower cost per iteration of
the partially implicit scheme, without being limited by its conditional sta-
bility. Applications of this approach to water reactor blowdown calculations
produce reductions in computer time by factors of 2 to 4 without a significant

loss of accuracy.



INTRODUCTION

The Transient Reactor Analysis Code (TRPAC) is currently being developed
for the thermal-hydraulic analysis of water reactor accidents. In the carly
versions of TRAC, the drift-flux cquations for one dimeasional two phase flow
were sulved with a partially implicit method described by Liles and Reed.]
This method is stable as long as the time step is limited by the Courant

relation
e < | =5 (1)

where AX Is the mesh spacing and V the flow velocity. For many problems this
stability limit 1s adequiate. However, we have fcund that accurate reproduc-
tion of flow ncear breuks in blowdowm caleculations requlres relatively fine
spaclal resolution. Since the flow velocities can be cxtremely high in these
reglons, the Courant condition requires time steps which are quite saall,
In problems with a large total number of mesh cells the cost in computer
time for following the full history of a blowdown with such amall time steps
can bhe prohibitively high.

One way of Increasing the time step size {s to use a fully impliclt

4
2,3,4 Results presented later In this paper show that in blowdown

method.
calculations, when a fully implict! numerical method is used to avoid stabilirty
1imitat fons, the Courani condition (1) can be violated by a factor of 10
without altering the results by wmore than 17.. Total computational time of
course does not decrease by an order of magnitude, Factors of two to four,
depending on convergence criterla, are not unusual | however. Jue reason for
this is that with larger time steps, state variables can change more per time

step and the number of iteratious required to solve the finite difference

cquntions may increase. Another reason is that the fully implliclt



method requires nearly twice the computational time per cell per tteration
nceded for the partially implicit ucheme. Therefore, It is worthwhile to
design an overall method for which the stabllity condition (1) can be exceeded
in the locations wherc high velocitles ecccur, hut where clivaper procedures

arc vtilized ¢lsowhare.

FLON EQUATIONS AND NUMERICAL METHODS
The model used tn describe two-phase flow in thix work requires the

fRinultaneous solution of the following four partial differential .-qnntlnnn:s'6
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and
ap e + (1-u)p, «
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Variables appearing irn the above cquations bhave the following meanings:

nn mixture densicy

n, vapor density (mlnrnscqplc)

Py 1iquid density (microscepic)

« vapor volume fraction

Vm mixture velocity

Vr relative velocity between phiases
c, vapor gpeciilc internal! energ?
¢, lHquid =pecific laternal cnerpy
¢ mixture specific internal cenergy
r vapar product fon rate due to phase chanpe
P presdiure

" force of gravity

K wall friction cosflicicent

g heat source

Tn liquid temperature

Tv vapor toemperature

In these cquations we have assumed pressure cquilibrium hetween the
liquid and vapor phasen. 1n addition, an assumption reparding partition
of cnerpy between the phases is needed. For this work it was assumed that the
tvwo phisen were at the same temperature. Finally, equations of state arc
specifled for both liquid and gas, and correlations used to obtain vr. Q.



Equations (2) - (5) are solved for one.dlmensional pipes using a staggerecd
Eulerian mesh, where state variables such as pressure, internal energy, and
vold fraction are obtained at the center of cells with length Axf and the mean
and relative velocitles are obrained at the cell bcundaries. Because of this
staggered mesh, it is necessary to form spacial averages of various quantities

to obtain the finite difference form of the divergence operator. To produce sta-

bility in the partially implicit method a donor-cell average was used of the form,

X,V for

Xv = 9
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where an integer subscript indicates that a quantity is evaluated at a mesh

cell center and a half integer denctes that it 1s obtained at a cell bounde:y.

With this notatlor the finite difference divergence operator 1is

v, - W) =(Aj+;5(xv')ﬁ_;§ - A, <xv>j_5)/v01 (10)

3
where A is the pipe's cross-sectional area, and Volj is the volume of the j'th

celi. Slight varlations oi these donor-cell terma appear in the velocity

cquation. Donor cell averages are of the form:
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and the term Vm-VVm is donor-celled as

(Vm J%'Vm J‘;ﬁ)/ij. ij_._;ﬁ 2 0
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vm s Vj+%-vm = vmj+!:,

Given the preceeding notation, the finite difference cquations for the

partially implicit method are:
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The superscript n indicates that the quant ity §s evaluated at the "current”
time and thus 1s known, while the superscript n+l indicates that the variable
is evaluated at the new time and hence fs an unknown for which the eqguat fons
must be solved. These equations are cquivalent to those glven by Liltes and
Reed in the full donor-cell limit, cxcept that the ternm ﬁ“ 4% In the velocity
cquation is computed here as a simple spacial taterpolation.

When constructing a set of fully fmplicit finlte difference cquations,
the use of donor cell averaging is ne lovger neceassary tor st.hility, and a
stralght interp-lation is often preferred. Hovever, for reasons which will
be discussed later, we chose to use the same donor cell averazioe in the
fully impliclt method that was used previously. As a result the finite
difference equations for this methiod are Ldentlcal 1o cquatfons 13) - 18) when
the superscripts on all terms not divided by At are ntl rather than n.

In a one cell traasition zone between a repion which 13 solved partially
implicitly and another rcpion solved fully implicicly, the finite diffoerence
cquations must be altered to maintaln conservation of mass and cnergy. I[n such a
zone the fully implicit formulation i{s used, except that the divervence terms

are altered to the form

I - S Nl ntl _ n, n+] ,
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whiere it has been assumed that the fully implicit region is at the higher values
ot j.
Both sets of finite difference ecquations are solved with a full Newton-

Raphson method rather than the block implicit technlque (BIT) described by



Liles and Reed. This involves inserting the mixture property definitions into
the {inite difference schemes, The resulting expanded alpebraic equations are
then lincarfzed and the thermal and calorie equations of state for cach plase
are inserted (sec reference 1 for a more detalled description). The basic
practical difference hetween these solution procedures is that the Newton-Raphsen
requires the inversion of a block trl-dlagonal matrix, and the BIT method drops the
off-dlagonal blocks of tnis matrix, solving only a block dlagonal sys:.em. For
the fully implicic equations this is absolutedly essential, since the BIT can
fall to converge if the stability conditlon given by equation 1) is violated
by very much. For the particular one-dimenslonal equations used in the par-
tfally implicit schewe the tridiagonal procedure can be pregrammed =o that it
requires essentially the same amount of computing time per iteratfon as the
BIT. However, in many applications the Newton=Raphson will converge to a
pivea tolerance In fewer iteratlons, veducing the total computational cost
per tima step, and thus naking it the preferred solhwmion method.
NUMERICAL RESULTS

The carliest tests of the comblned methods consisted of two pipe segments
linked to form a closed loop. One segment was treated fully implicitly and the
other partially implicitly. A constant moumentum source was applied, wall fric-
tion specified, and the system driven to a steady state. The most Important re-
sult to come from these tcsts was the observation that for two phase systems vhere
the averages In the fully implicit section were done by spacial interpolation
rather than donor-celling, non-physical standing waves occurred in the loop.
However, when donor-celling was used in the fully implicit section, no such waves
appeared, indicating that the non-ph 'sical results were a direct consequence of
the interfaces between the two different spacial differencing methods.

The bulk of the tests were run on the blowdown of a pipe (unheated RSR
test problem 2, sce Kirchner7 for details). The noding used for the pipe is

9



tiven in Table 1. The systen 1s Initially pure 1f{qeid with pressures near

9.8 MPa, temperatures of 543 K, and steady state flow conslistent with a

velocity into cell 16 of 1.4 m/sec. All calciiations were inftia.ed by setting
a zero velocity boundary condition on the left boundary of cell 1, and atmoa-
pheric boundary conditions to the right of cell 16, simulating the simultaneous
closing of a valve at ore end of the pipe and the opening oi a break at the
other.

A base calculation was first performed using only the partially implicit
procedure with the time step controlled by condition 1) except during the first
0.1 sec., when it was limited to 0.5 milliseconds to resolve the initial rapid
depressurization to saturizatlion conditions. Thls resulted in a time step over
the remaining 7.9 seconds of the blowdown which rcmained falrly conscant at ahout
2 milliseconds. The time histories of pressure for zones 1 and 16 of this run
are plotted as solid 1lines on Figure 1. Though spacial zoning and t Imestep
size are different, the results of this run are basically the same as those
presented by Kirchner.7

Initial tests of the fully implicit method were performed using a spacial
interpolation (central differencing) approach, rather than donor cell
averaging. This approach was first applied to the whole pipe with the same
zoning and time step size as the base case. DNuring the final 7 seconds of the
blowdown, the pressures obtained from this caleulation varied by 10% to 507 from
those of the base case. To check which calculation was more accurate, calcula-
tions were run for both methods with successively smaller mesh spacing. The
resulls of the donor-celled, partially implicit method did not change signifi-
cantly when the zoning was refined, but the results of the central diffevence
scheme approached those of the base case as the cell lengths were decrcased.
This i3 interesting since the spacial error *erms of a centr2® difference scheme
are of the order AXZ, compared to errors of the order AX for the donor celled
method. However, it should not be too surprising because rhis problem contains

large changes in void fraction, pressure, and the spaclal derivatives of these



quantities over very short distances. Due to these results and those with the
steady state loop problems, donor-cell averaging was adopted for the fully implicit
code.

To demonstrate the dependence of accuracy on time step, the blowdown problem
was rerun with the tully implicit donor-cell method. Again the time step was
fixed at 0.5 milliseconds for the first 0.1 second, but after that the time step
was set to 0.04 seconds in one case and 0.2 seconds in another. The results
obtained with timesteps of 0.2 scconds are plotted in Fig. 1 as dashed lines.

They agree with the base case to within 102 when time steps of 0.04 seconds are
used, the results agreed with the base case te within 17, and could not be distin-
guished as separate lines in Fig. 1. Hence, excellent accuracy was achieved at

20 times the Courant number.

Finally the full combined method was tested on this problem. Cells 1-10
werce treated with the partially implicit equations, cell 11 was the transition
zone, and cells 12-16 were computed with the fully implicit equatiors. The time
step was controlled by the velocity between cells 10 and 11, and averaged about
0.02 scconds. As would be expected from previous results, this run agreed with
the base case to better than 1% at all times. For this particular problem, the

savings in computer time for the final 7.9 seconds was roughly a factor of 3.

In addition to the simple tests which have been described, this technique
has been successfully applied to the numerical analysis of the semiscale tests
run by the Idaho National Engiuneering Lahoratory.8 No direet timing comparisons
were made between blended approach and partially implicit method for this problem
due to the large amounts of computer time required. However, scme indirect
comparisons are available. Runs with the blended scheme were done with 307%
more mesh cells than the old methnd. 1In the regions near the break where velo-

citic were highest, a fully implicit treatment allowed mesh lengths which were

11



an order of magnitude smaller than those used for the partially implicit method.
For calculations which were comparable in all respects except those just meationed,
the blended approach required 257 to 40% less computer time, depending on the

total elapsed real time at which the calculations were termlnated.

CONCLUSIONS

We have shown that a combination of two finite difference methods with differ-
ent levels of implicitness can be used effectively to avoid stability problems
without sacrificing accuracy. Though a fully implicit set of finite difference
equations can be applied to achieve the same end, we have found that for blowdown

probleme this mixed method 1is less costly to use.
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Cell Numbers

1-5

6-10

11-13

14

15-16

Length (m)

2.02

.80

1.99

1.49

.99

TABLE 1

13

4.52
3.39

2.26

X

X

3.46
2.26
2.26

2.26
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Figure Captions

Figure 1. Pressure versus time for pipe blowdown calculation$ with

At = ,002 and At = .2 seconds.
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